Vintage Wicked Fat Chance MTB Frame Ritchey

tompeter

Member
When you click on links to various merchants on this site and make a purchase, this can result in this site earning a commission. Affiliate programs and affiliations include, but are not limited to, the eBay Partner Network.

JonnyFuego

New member
The Sakaé Powerbuldge bars are made from Titanium, but commercially pure titanium and I would be cautious about riding with CP Ti. Commercially pure (CP) titanium alloys consist of alpha alloys with extremely low amounts of what are called "interstitial" elements used as alloy elements. "Interstitial elements" are alloy elements (solute) whose atom is small enough to fit in the spaces ("interstices") between the primary or "solvent" metal's atoms. The interstitial atoms must be very small to fit in these spaces, and are generally non-metallic, in the case of alpha titanium alloys they are nitrogen, oxygen, and carbon. The primary difference between the various grades of commercially pure titanium is the content or amount of this interstitial element in the alloy. Alloys that have a higher purity, (less solute or interstitial element alloyed in the titanium), have lower strength, lower hardness and a lower alpha-beta (beta transus) transformation temperature. Commercially pure titanium alpha alloys are referred to by their American Society for Testing and Materials (ASTM) "grade" designation number. The commonly used CP alloys have oxygen as their primary interstitial element. They are known as "grade 1" which has 18/100ths of 1% oxygen as an interstitial alloy element, "grade 2" which has 25/100ths of 1% oxygen as an interstitial alloy element, "grade 3" which has 15/100ths of 1% oxygen as an interstitial alloy element, and "grade 4" which has 40/100ths of 1% oxygen as an interstitial alloy element. Although the strength of the alpha CP alloy increases as the interstitial element content rises, commercially pure titanium alloys have low to intermediate strength compared with the other alpha-beta and beta type titanium alloys. The CP alloys are commonly used in pipe and tubing form because they have a high ductility (can bend without breaking). Relatively inexpensive Sakae Ringyo (SR) Powerbulge Titanium ATB was popular because it was made of titanium, but is made from CP tubing. These bars are know to snap off at the grip while riding.
 

Stingercut

Active member
The Sakaé Powerbuldge bars are made from Titanium, but commercially pure titanium and I would be cautious about riding with CP Ti. Commercially pure (CP) titanium alloys consist of alpha alloys with extremely low amounts of what are called "interstitial" elements used as alloy elements. "Interstitial elements" are alloy elements (solute) whose atom is small enough to fit in the spaces ("interstices") between the primary or "solvent" metal's atoms. The interstitial atoms must be very small to fit in these spaces, and are generally non-metallic, in the case of alpha titanium alloys they are nitrogen, oxygen, and carbon. The primary difference between the various grades of commercially pure titanium is the content or amount of this interstitial element in the alloy. Alloys that have a higher purity, (less solute or interstitial element alloyed in the titanium), have lower strength, lower hardness and a lower alpha-beta (beta transus) transformation temperature. Commercially pure titanium alpha alloys are referred to by their American Society for Testing and Materials (ASTM) "grade" designation number. The commonly used CP alloys have oxygen as their primary interstitial element. They are known as "grade 1" which has 18/100ths of 1% oxygen as an interstitial alloy element, "grade 2" which has 25/100ths of 1% oxygen as an interstitial alloy element, "grade 3" which has 15/100ths of 1% oxygen as an interstitial alloy element, and "grade 4" which has 40/100ths of 1% oxygen as an interstitial alloy element. Although the strength of the alpha CP alloy increases as the interstitial element content rises, commercially pure titanium alloys have low to intermediate strength compared with the other alpha-beta and beta type titanium alloys. The CP alloys are commonly used in pipe and tubing form because they have a high ductility (can bend without breaking). Relatively inexpensive Sakae Ringyo (SR) Powerbulge Titanium ATB was popular because it was made of titanium, but is made from CP tubing. These bars are know to snap off at the grip while riding.
Love the material science intel 😎 Fascinating.
 
Top